
Compsci 677: Distributed and OS Lec. 14

Today: More Classical Problems

• Part 1: Leader election

• Part 2: Mutual exclusion

1

Compsci 677: Distributed and OS Lec. 14

Part 1: Election Algorithms

• Many distributed algorithms need one process to act as coordinator

– Doesn’t matter which process does the job, just need to pick one

• Election algorithms: technique to pick a unique coordinator (aka leader election)

• Examples: take over the role of a failed process, pick a master in Berkeley
clock synchronization algorithm

• Types of election algorithms: Bully and Ring algorithms

2

Compsci 677: Distributed and OS Lec. 14

Bully Algorithm

• Each process has a unique numerical ID

• Processes know the Ids and address of every other process

• Communication is assumed reliable

• Key Idea: select process with highest ID

• Process initiates election if it just recovered from failure or if coordinator failed

• 3 message types: election, OK, I won

• Several processes can initiate an election simultaneously

– Need consistent result

• O(n2) messages required with n processes

3

Compsci 677: Distributed and OS Lec. 14

Bully Algorithm Details

• Any process P can initiate an election

• P sends Election messages to all process with higher Ids and awaits OK
messages

• If no OK messages, P becomes coordinator and sends I won messages to all
process with lower Ids

• If it receives an OK, it drops out and waits for an I won

• If a process receives an Election msg, it returns an OK and starts an election

• If a process receives a I won, it treats sender an coordinator

4

Compsci 677: Distributed and OS Lec. 14

Bully Algorithm Example

• The bully election algorithm

• Process 4 holds an election

• Process 5 and 6 respond, telling 4 to stop

• Now 5 and 6 each hold an election
5

Compsci 677: Distributed and OS Lec. 14

Bully Algorithm Example

d) Process 6 tells 5 to stop

e) Process 6 wins and tells everyone

6

Compsci 677: Distributed and OS Lec. 14

Ring-based Election
• Processes have unique Ids and arranged in a logical ring

• Each process knows its neighbors

– Select process with highest ID

• Begin election if just recovered or coordinator has failed

• Send Election to closest downstream node that is alive

– Sequentially poll each successor until a live node is found

• Each process tags its ID on the message

• Initiator picks node with highest ID and sends a coordinator message

• Multiple elections can be in progress

– Wastes network bandwidth but does no harm

7

Compsci 677: Distributed and OS Lec. 14

A Ring Algorithm

• Election algorithm using a ring.

8

Compsci 677: Distributed and OS Lec. 14

Comparison
• Assume n processes and one election in progress

• Bully algorithm

– Worst case: initiator is node with lowest ID

• Triggers n-2 elections at higher ranked nodes: O(n2) msgs

– Best case: immediate election: n-2 messages

• Ring

– 2 (n-1) messages always

9

Compsci 677: Distributed and OS Lec. 14

Part 2: Distributed Synchronization
• Distributed system with multiple processes may need to share data or access shared

data structures

– Use critical sections with mutual exclusion

• Single process with multiple threads

– Semaphores, locks, monitors

• How do you do this for multiple processes in a distributed system?

– Processes may be running on different machines

• Solution: lock mechanism for a distributed environment

– Can be centralized or distributed

10

Compsci 677: Distributed and OS Lec. 14

Lock Example
• Online store example:

• 2 clients buy same item, need to decrement stock

11

Compsci 677: Distributed and OS Lec. 14

Centralized Mutual Exclusion
• Assume processes are numbered

• One process is elected coordinator (highest ID process)

• Every process needs to check with coordinator before entering the critical section

• To obtain exclusive access: send request, await reply

• To release: send release message

• Coordinator:

– Receive request: if available and queue empty, send grant; if not, queue request

– Receive release: remove next request from queue and send grant

12

Compsci 677: Distributed and OS Lec. 14

Mutual Exclusion:
A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical region. Permission is granted

b) Process 2 then asks permission to enter the same critical region. The coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator, when then replies to 2

13

Compsci 677: Distributed and OS Lec. 14

Properties
• Simulates centralized lock using blocking calls

• Fair: requests are granted the lock in the order they were received

• Simple: three messages per use of a critical section (request, grant, release)

• Shortcomings:

– Single point of failure

– How do you detect a dead coordinator?

• A process can not distinguish between “lock in use” from a dead coordinator

– No response from coordinator in either case

– Performance bottleneck in large distributed systems

14

Compsci 677: Distributed and OS Lec. 14

Decentralized Algorithm
• Use voting

• Assume n replicas and a coordinator per replica

• To acquire lock, need majority vote m > n/2 coordinators

– Non blocking: coordinators returns OK or “no”

• Coordinator crash => forgets previous votes

– Probability that k coordinators crash P(k) = mCk pk (1-p)m-k

– Atleast 2m-n need to reset to violate correctness

• ∑ 2m-n nP(k)

15

Compsci 677: Distributed and OS Lec. 14

Distributed Algorithm
• [Ricart and Agrawala]: needs 2(n-1) messages

• Based on event ordering and time stamps

– Assumes total ordering of events in the system (Lamport’s clock)

• Process k enters critical section as follows

– Generate new time stamp TSk = TSk+1

– Send request(k,TSk) all other n-1 processes

– Wait until reply(j) received from all other processes

– Enter critical section

• Upon receiving a request message, process j

– Sends reply if no contention

– If already in critical section, does not reply, queue request

– If wants to enter, compare TSj with TSk and send reply if TSk<TSj, else queue (recall: total ordering based on multicast)

16

Compsci 677: Distributed and OS Lec. 14

Properties

• Fully decentralized

• N points of failure!

• All processes are involved in all decisions

–Any overloaded process can become a bottleneck

17

Compsci 677: Distributed and OS Lec. 14

A Token Ring Algorithm

a) An unordered group of processes on a network.

b) A logical ring constructed in software.

18

• Use a token to arbitrate access to critical section
• Must wait for token before entering CS
• Pass the token to neighbor once done or if not interested
• Detecting token loss in non-trivial

Compsci 677: Distributed and OS Lec. 14

Comparison

• A comparison of four mutual exclusion algorithms.

19

Algorithm Messages per entry/
exit

Delay before entry (in
message times) Problems

Centralized 3 2 Coordinator crash

Decentralized 3mk 2m starvation

Distributed 2 (n – 1) 2 (n – 1) Crash of any process

Token ring 1 to ∞ 0 to n – 1 Lost token, process
crash

Compsci 677: Distributed and OS Lec. 14

Chubby Lock Service
• Chubby: distributed lock service developed by google

• Design for coarse-grain locking

• uses file system abstraction for locks

• Each Chubby cell (~5 machines) supports 10,000 servers

• One replica is outside the data center for high availability

• distributed file system interface for locking and sharing state

• Use cases:

• Leader election: use locks for leader election and advertise leader

• Grab lock, declare oneself leader

• Coarse-grain synchronization - hold lock for hours or days

20

Compsci 677: Distributed and OS Lec. 14

Chubby Lock Service
• Chubby cell: elect a primary

• each replica maintains a DB

• master initiates updates to DB

• Use file abstraction

• file is a “named” lock

• reader-writer locks

• Primary can fail

• Triggers new election

21

